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Abstract—TinyML has rose to popularity in an era where
data is everywhere. However, the data that is in most demand is
subject to strict privacy and security guarantees. In addition, the
deployment of TinyML hardware in the real world has significant
memory and communication constraints that traditional ML fails
to address. In light of these challenges, we present TinyFedTL, the
first implementation of federated transfer learning on a resource-
constrained microcontroller.

Index Terms—TinyML, Federated Learning, Microcontrollers,
Transfer Learning, Privacy, Machine Learning

I. INTRODUCTION

Our presentation is available at this link.
In recent years, the emphasis on data privacy has grown

in the wake of several privacy scandals and information leaks.
More than ever, individuals are concerned with who has access
to their personal data and where it is being shared. Most
current successful machine learning methods, for both the Tiny
domain and not, benefit from large and diverse datasets, so this
rise in concern regarding digital privacy appears to come at
the cost of progress.

In addition, in many applications there is a significant need
for distributed learning agents that operate in an environment
with significant communication costs and minimal on-device
storage. These distributed computing setups have even taken
hold in consumer-facing applications such as the Amazon Go
store. Tiny Machine Learning is a rapidly growing field at
the intersection of embedded systems and machine learning,
allowing significant insights, data collection, and algorithmic
development that was not previously possible.

Put together, the opportunity is twofold: data from several
sources can no longer be consolidated for a singular learner to
access due to privacy concerns and low-cost learning devices
on the edge need a new method to aggregate shared insights
that doesn’t require large on-device memory and constant
communication to a central server. Thus, we see the field of
TinyML is ripe for applications of privacy-preserving machine
learning. However, frameworks like Tensorflow Lite do not
currently support model training on-device, but rather enable
the deployment of static models for inference [1].

In this work, we contribute:
• The first implementation of federated learning on a mi-

crocontroller.

• A method of deploying transfer learning on a resource-
constrained microconroller without growing storage costs
as the number of training examples increases.

• The method of federated transfer learning for the CIFAR-
10 benchmark doesn’t necessitate a dense layer with pre-
trained weights, meaning devices can be re-trained to
different types of classification problems.

• Implemmentation of federated transfer learning on an
Arduino microcontroller.

• Identification of challenges and limitations encountered in
the process of training on-device with a federated learning
framework.

II. RELATED WORK

A. TinyML

Previous work in TinyML is focused on optimizations to
compress models and reduce the inference latency but does
not aim to allow continuous learning, especially in a privacy-
preserving manner. Prior research in deploying learning on-
device in the TinyML domain has included simple NN classi-
fiers like k-Nearest Neighbors to transfer learn on-device [2].
However, such a classifier scales poorly with more training
examples and does not follow federated learning privacy
guarantees, as information about the input to a network can
be generated from the embedding generated without the final
dense layer. Therefore, such an implementation is essentially
infeasible on a hardware platform such as the Arduino Nano.

B. Federated Learning

The domain of Federated Learning has been a hot research
topic in recent years. The topic first emerged in late 2015, with
the seminal paper by McMahan et al. of Google AI detailing
their novel approach and proposing a concrete “Federated
averaging” algorithm [3]. The introduction of this algorithm
presented a solution to several bottlenecks concerning mobile
devices and privacy constraints. By distributing the data across
edge devices, user privacy can be respected while learning
models can be conducted on the aggregate updates on the
collection of devices [4]. There has been continued work in
addressing problems in Federated Learning, including non-iid
data distribution, attacks, and communication cost [5]–[7].
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C. FL for TinyML

Due to the fact that both fields are relatively new, there
has been little work conducted in the intersection of tinyML
and Federated Learning. There has been some work in the
implementation of Federated Learning in mobile edge network
and in selectively updating parts of large networks to make
transfer learning more feasible but none have integrated into a
significantly constrained device, but instead onto a Raspberry
Pi [8], [9].

III. METHODS AND EXPERIMENTS

A. Transfer Learning Task

In order to turn a CNN into a feature extractor, we removed
the final fully connected (dense) layer, so the output of the
CNN was a feature vector n units long. We took the weights
for this feature vector off-the-shelf, meaning we did not train
the model on any specific task but rather kept the weights from
a large dataset that were used to generate meaningful features
(in this case, the dataset was either ImageNet or Visual Wake
Words) [10], [11]. We then used the features extracted by the
CNN extractor to be the input into a fully connected layer,
whose outputs were then put through a softmax to get class
probabilities. Training the weights of this FC on-device later
but not the feature extractor (which is set aside as constant)
is the task.

A typical benchmark for Federated Learning is the CIFAR-
10 dataset, which consists of 32x32 images in 10 different
classes. These images were upscaled to 96x96 and turned into
two binary classification problems: dog versus no-dog and cat
versus no-cat. The dog classification problem was treated as
the original problem (for optionally pre-training the the dense
layer of the off-the-shelf model trained on ImageNet or Visual
Wake Words) and the cat classification problem was treated
as the transfer problem.

B. Hardware

The microcontroller of choice for these experiments was the
Arduino Nano 33 BLE Sense. The BLE Sense is the hardware
of choice for many TinyML applications due to its variety of
sensors (including temperature, pressure, humidity, light, color,
and more) and interface with the Arduino IDE.

The Arduino federated learning implementation also used a
5MP Arducam to collect real-world images as local training
data. A macbook simulated a global server by communicating
with the Arduino through a serial port. Finally, unlike other
approaches for on-device learning, no SD card or external stor-
age was used in simulations. This meant that all training and
data storage had to take place in the 1MB of flash memory and
256KB of SRAM, further constraining the memory capacity.

C. Model Transfer Learning On-Device

Due to the incompatibility of the current version of Tensor-
flow Lite Micro with on-device training and update techniques,
we implemented our own fully connected (FC) layer inference
and backpropogation update in C++.

D. Arduino Federated Learning Implementation

The Federated Averaging algorithm, the gold standard
for enabling federated learning across distributed devices, is
shown in Algorithm 1. This algorithm is the basis for our
TinyFedTL system.

Algorithm 1 FedAvg Algorithm [3]
Input: Devices i = 1, ..., N
for epoch t = 1, 2, . . . , T do

for i ∈ N do
Device i trains all models m on its local data for E
local episodes

end for
for m = 1, 2, . . . ,M do

w avg = AverageWeights(i s.t. c(i)m 6= 0)
Learner updates model m with w avg

end for
Evaluate models with global validation data

end for

Federated Learning in the real-world likely only sees a given
example or data point once. This is notably different than
normal federated (or not) training schemes, in which training
examples are reused over epochs of training. Furthermore,
theoretical federated learning schemes push and send weight
updates on a carefully scheduled and consistent basis. This is
simply infeasible in many applications of tinyML edge devices
where unstable network connection may prevent comunication
for long stretches of time. Moreover, data input is not uniform
– changing environments may result in some days where a
certain edge device sees many pieces of new data, while other
devices see none.

Our setup mirrors real-world scenarios as described above.
Data available to the model is different for every epoch of
training and collected through the Arducam. Furthermore, the
arduino continuously sees and trains on new data until it is
contacted by the global server to update its weights. When
the server does initiate contact, model weight and bias updates
have to be sent and read byte by byte via the serial port
between the arduino and the server. The batch size on our
real-world implementation is 1 (instantaneous inference and
model update).

IV. RESULTS

A. Models

We implemented two versions of MobileNetV2 for our
task: the Tensorflow built-in MobileNet compressed with a
factor of alpha = 0.35 (hereby referenced as tf-mobilenet)
pretrained on ImageNet and the MobileNet from the TinyML
Perf Benchmark (hereby referenced as perf-mobilenet) [10],
[12]. The compressed tf-mobilenet has more parameters than
perf-mobilenet has x parameters. Both models were frozen and
the input and outputs were quantized using post-training 8-bit
quantization to interface correctly with the microcontroller.

We ran into issues with transfer learning on the perf-
mobilenet model. Specifically, the embeddings generated from



TABLE I
DEPLOYED MODEL DESCRIPTIONS

Model Model Parameters
Name Total Trainable Trainable Trained on

tf-mobilenet 412,770 2,562 410,208 ImageNet
perf-mobilenet 221,794 514 221,280 Visual Wake Words

the network were incredibly sparse, where only 16 of the
256 outputs were ever non-zero. This may be as a result of
encouraging sparsity during training via methods such as L2
weight regularization so the embeddings generated are highly
specific to the task it was initially trained on (person detection
through the visual wake words dataset). If given more time,
we would have re-trained the perf-mobilenet to get more
meaningful embeddings.

In our simulations, tf-mobilenet performed much better and
successfully learned the task of cat identification. However,
it was too large to fit on-device for our microcontroller.
Since we were using an Arduino Nano 33 BLE Sense with
1MB of flash memory and 256KB of SRAM, we believe that
other microcontrollers could have fit the tf-mobilenet model.
Therefore, we used the perf-mobilenet for memory and time
benchmarking on our arduino and the tf-mobilenet model in
our simulations to understand performance.

B. Transfer Learning from Scratch versus Pretrained

There are two methods of transfer learning under our setup:
using a FC layer trained on a different task and changing
the weights, or starting with a randomly-initialized FC layer.
Ideally, the differences would be negligible or the randomly-
initialized layer would perform better, since then a CNN-based
feature extractor could be developed and deployed once and
then the size of the dense layers (embedding size x class
number) can be varied for various types of applications with
different class sizes. As we can see in Figure 1, the differences
between the randomly initialized model and the model pre-
trained on the Dog classification problem have equivalent
performance in the Cat classification problem. This is a great
result, because it means that whenever we want to switch our
feature extractor to a different task to transfer learn, we can
just initialize a random FC layer, and the features that were
lost in the replacement are not useful for transfer learning.

C. Federated Learning

Just to note on the following graphs, the measure training
examples seen is across all the devices. Therefore, both devices
in a federated context and devices not in federated context
are trained and benchmarked against each other. In addition,
these results were collected through simulation of the same
C++ code that was deployed on the Arudino platform: so the
results are identical to performance on-device without having
to wait for training and transfer of weighs to occur.

It’s interesting to see that accross all our graphs, models
did not benefit from additional data after ∼ 3000 training
examples likely because they were stuck in local optima. This
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Fig. 1. Train and validation accuracy across 10 experiments comparing the
training performance of the tf-mobilenet and perf-mobilenet models. The
results represent the mean ± standard deviation across 10 experiments with 5
local episodes and a batch size of 20. The FL implementation has 2 devices.

is likely due to the simplicity in the optimizer we used in
training our model and presents significant future opportunity.

1) Number of Devices: Figure 2 shows the effectiveness
of federated learning. As we can see, the validation accuracy
drops as the number of devices increases, as with more
distributed data model updates may cancel each other out or
progress may be lost during the averaging step. This is as
compared to the baseline of regular (non-FL) transfer learning,
shown on the graph as device number of 1.

2) Batch Size: As we can see in Figure 3 that batch
size has a significant impact on the variability in epoch-to-
epoch performance of FL. This makes sense even in a non-FL
scenario, as more data during an update better approximates
the true gradients in stochastic gradient descent and prevents
over-indexing on a certain piece of data. Ideally in a TinyML
application, we would use a batch size of 1 since inference
would be instantaneous rather than having to allocate storage
and produce results once sufficient data has been collected.

3) Local Episodes: The number of local episodes is defined
as the number of times the model was trained on a given batch
of data. In Figure 4, it’s clear to see that the number of local
episodes leads to smaller variability in the epoch-to-epoch
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Fig. 2. The validation accuracy across epochs of training across different
number of devices participating in federated learning. The results represent
the mean ± standard deviation across 10 experiments with 5 local episodes
and a batch size of 20.
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Fig. 3. The validation accuracy across epochs of training across different
batch sizes. The results represent the mean ± standard deviation across 10
experiments with 5 local episodes and 2 devices.

validation accuracy. On the other hand, extra local episodes
may lead to overfitting to the specific epoch and has greater
associated computational costs. For this task, the increase in
the number of local episodes from 5 to 6 doesn’t present a
significant increase in validation accuracy or a decrease in
variability.

D. Performance on-Device

As stated above, the perf-mobilenet model was used to
measure on-device memory and communication cost time.
Images were collected through the 5MP arducam, converted
to 96x96x3 RGB data, and trained on for 20 local epochs.

1) Memory: Deploying the model utilized 210 KB (80%)
of dynamic memory and 657 KB (66%) of program storage
space. This excludes further memory costs associated with
communicating with the global server and encoding captured
images.
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Fig. 4. The validation accuracy across epochs of training across different
number of local episodes. The results represent the mean ± standard deviation
across 20 experiments with a batch 20 and 2 devices.

An important advantage of federated learning is the ability
for the device to continuously take in new input data then
discard it after it’s done training. Since data is not transferred
from the edge device to a central server, the device only
has to retain its model weights in the federated learning
scheme. Therefore, memory footprint does not increase with
the number of training samples per device. This is particularly
useful in scenarios where external data storage (even SD cards)
are not available. Compared to implementations in previous
work with KNN and other similar models, we clearly see a
vast improvement in memory footprint.

2) Time: By picking a sparse model and writing imple-
mentation from scratch without use of external libraries, we
were able to optimize our deployment runtime. Image capture
and inference took between 8-10 seconds as a buffer from
Arducam data was processed as input to the perf-mobilenet
model. The actual training process was quite fast as it took
only 214ms to go through 20 episodes of local epochs on-
device. Then, weights and bias data had to be sent between
the arduino and the global server in both directions. These
were encoded as bytes, then sent through the serial port in
packets of 32 bits. The 514 floats (256x2 weights and 2 bias)
often took up on average ≥ 6000 bytes, and thus took over
30 seconds (one way) to upload and download.

V. DISCUSSION

A. Responsible AI and Privacy

Our work has shown the possibility of utilizing a federated
learning schema to learn tasks in a tinyML domain without
the need to share data with a central server. Since data never
leaves the device, this opens up avenues for a multitude of
applications that have been thus far hesitant to adopt machine
learning techniques due to privacy concerns. For instance,
in the healthcare context, patient wearables and sensors can
continuously assess situations and learn without the risk of



privacy infringement for the user. This opens up data in many
new fields to be utilized to improve quality of life and user
experience without sacrificing privacy.

Moreover, we show that privacy-centric on-device transfer
learning is not only possible but also effective. In our results
above, we see that tinyFedTL performed on par with our
simulations with regular learning techniques. The federated
averaging method effectively captures learnings from edge
devices through only sharing of the weights without the need
for any attributes of the data.

B. Future opportunities for On-Device Learning

There are a myriad of future directions this work can go.
The first is to implement support for better weight decay and
a better optimizer to solve the local optima issue discussed
earlier. The second is more algorithmic: in order to further
compress the amount of memory needed to run the FC layer
training on-device, we could implement feature reduction
methods between the embedding from the CNN and the FC
layer trained on-device. This would significantly reduce the
number of weights stored and trained, therefore also increasing
latency and allowing the storage of embeddings to form
batches.

Communication cost is also an area of improvement. Al-
though a 1-minute round-trip communication time per update
is not infeasible, this presents problems for edge devices in
remote areas with unstable wifi. There, satellites may only
have clear connection at short intervals, and packets may be
dropped without notice. Thus, possible future work will be
to modify our communication protocol for greater resiliency.
Other work may take advantage of the sparsity of the model
to develop a more efficient message encoding rather than
directly translating all weight parameters into bytes. However,
there are some costs and decreases in accuracy as the number
of devices grow in the federated learning scheme, as shown
above. This can be mitigated with capturing more data (our
data was limited by the number of images per class in CIFAR-
10) and also employing other federated learning techniques
like hierarchical training. In those schemas, instead of only
having one global server, several intermediary nodes are used
to break up edge devices into different groups, meaning there
are fewer devices per server node. This would decrease the
likelihood of conflicting updates and help sustain accuracy.

VI. CONCLUSION

We have shown a successful first-attempt at deploying on-
device federated learning. We have demonstrated the efficacy
of tinyFedTL with one-shot examples such that storage costs
don’t increase as the number of training examples increase.
We have also shown that pre-trained weights aren’t necessary
for transfer learning, meaning that edge devices can be re-
trained for multiple different classification problems. Finally,
our work has also identified several challenges and future
avenues of research. The lack of precedent in this task means
there is ample room for exploration in terms of designing
better optimizers and hypertuning parameters.
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APPENDIX A: HIGH LEVEL DESCRIPTION OF CODE

All our code, including model modifications, C++ NN and
FL implementations, Arduino modifications, and more is avail-
able at https://github.com/kavyakvk/TinyFederatedLearning.
Below is information on our file structure, graph and result
generation code, and the important files for training (marked
with a ***).

dl
source
----arduino_training_final_v3
------->***the .ino file has the implementation

of our FL code for the Arduino IDE to
compile

------->***python_final_script.py acts as the
"central server" for the arduino

----simulation
------->***NeuralNetwork.cpp has our FC

implementation and the FL implementation
------->***simulation.cc is the file with the

code necessary to run our simulations.
------->simulation-xxx the executable that can

be run with ./ for each of our
experiments

https://github.com/kavyakvk/TinyFederatedLearning


-------> the .txt files are the output from
terminal when running the experiments

------->fl_simulation_analysis generates the
.csv from the .txt

------->graphing.ipynb has the information to
graph our figures from the paper
from the .csv files

tensorflow (no changes)
third_party (no changes)

APPENDIX B: BREAKDOWN OF WORK

Kavya and Eric contributed equally to this work, with Eric
taking a focus on the implementation on the Arduino side and
Kavya taking a focus on the NN side.
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